Geometric effects on fluid mixing in passive grooved micromixers.
نویسندگان
چکیده
The effects of geometric parameters on the mixing performance of a staggered herringbone mixer (SHM) with patterned grooves are numerically investigated. Combining use of the software package CFD-ACE+ and the Taguchi method provides a powerful and systematic approach for research on microfluidics. An orthogonal array L9(3(4)) is established for parameters introduced by the groove geometry; in total 9 cases are simulated. Analyses of the mixing phenomena, geometric parameter, pressure loss and flow rate through grooves are conducted. The modes of fluid motion and dominant mechanisms of mixing within the SHM are observed and ascertained. Although the depth ratio and the asymmetry index of the groove are found to be dominant geometric parameters, the rate of flow within the groove is verified to be the most significant factor that affects the mixing performance of a SHM. To date, the effects of the parameters are evaluated within specified ranges, and the true optimum design has yet to be discovered.
منابع مشابه
Numerical Study on Low Reynolds Mixing ofT-Shaped Micro-Mixers with Obstacles
Micromixers are one of the most crucial components of Lab-On-a-Chip devices with the intention of mixing and dispersion of reagents like small molecules and particles. The challenge facing micromixers is typically insufficient mixing efficiency in basic designs, which results in longer microchannels. Therefore, it is desirable to increase mixing efficiency, in order to decrease mixing length, w...
متن کاملThe effect of flow parameters on mixing degree of a three dimensional rhombus micromixer with obstacles in the middle of the mixing channel using oscillatory inlet velocities
The previous studies of authors on passive micromixers indicated that the micromixers dividing the flow to several layers, such as rhombus micromixers and micromixers with obstacles in the middle of the mixing channel, have higher mixing degree than other types. Also, using of oscillatory inlet velocities is an active method to enhance the mixing efficiency of micromixers. Therefore, in this st...
متن کاملEvaluation of Floor-grooved Micromixers using Concentration-channel Length Profiles
We evaluated the dynamic micromixing performances in slanted groove micromixers (SGM) and staggered herringbone micromixers (SHM) and quantitatively compared their differences using concentration vs. channel length profiles obtained from numerical stimulations. It is found that faster and finer mixing took place in the SHM and the chaotic mixing was more effective at locations closer to the gro...
متن کاملDesign and fabrication of an effective micromixer through passive method
Micromixer is a significant component of microfluidics particularly in lab-on-chip applications so that there has been a growing need for design and fabrication of micromixers with a shorter length and higher efficiency. Despite most of the passive micromixers that suffer from long mixing path and complicated geometry to increase the efficiency, our novel design suggests a highly efficient micr...
متن کاملA flexible layout design method for passive micromixers.
This paper discusses a flexible layout design method of passive micromixers based on the topology optimization of fluidic flows. Being different from the trial and error method, this method obtains the detailed layout of a passive micromixer according to the desired mixing performance by solving a topology optimization problem. Therefore, the dependence on the experience of the designer is weak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 5 10 شماره
صفحات -
تاریخ انتشار 2005